Advanced Ceramics

Materials Innovations: University of California to Establish NSF Engineering Research Center

The new center will focus on nanoscale multiferroic devices that offer unprecedented capabilities to electromagnetic components.

April 1, 2013
Trans

The National Science Foundation (NSF) recently announced an award to the University of California-Los Angeles (UCLA) and its partners to establish a new NSF Engineering Research Center (ERC) focused on nanoscale multiferroic devices that offer unprecedented capabilities to electromagnetic components. The ERC, one in a cohort of three with a nanosystems focus, will pursue interdisciplinary research and education to address questions important to both nanotechnology and multiferroic-based electronics, and to meet critical industry needs through innovation. NSF will invest $18.5 million in the center over the next five years.

The NSF Nanosystems Engineering Research Center (NERC) for Translational Applications of Nanoscale Multiferroic Systems (TANMS) intends to lead the integration of newly discovered large-effect multiferroic materials into electromagnetic devices, thereby enabling chip-scale generation of magnetic fields through the simple application of a voltage. Large magnetic effects are achieved in multiferroic materials by the nanoscale design of thin-film structures, where each layer is mechanically responsive to the application of either an electric field or a magnetic field—a combination that previously was reportedly difficult to achieve. These materials recently emerged following breakthroughs in understanding magnetic effects on the nanoscale, the development of models that coupled nanoscale effects into macroscopic component simulations, and the subsequent mastery of nanoscale manipulation to make the designer materials.

While electromagnetic devices have long been important in many communications and aerospace systems, they were difficult to miniaturize into chip-scale components. This is because the only way to create the magnetic component of the electromagnetic field was by setting up a current within the device. Unfortunately, the methods for current generation led to clumsy architectures that resisted scaling down to chip-size and were notorious power “hogs” that produced excessive heating. As a consequence, electromagnetic devices have not benefitted from the integrated circuit revolution that, driven by Moore’s law, has led to smarter and faster electronic processors as the size of digital devices decreased. The discovery of multiferroic materials and their future integration into devices will enable electromagnetic devices to undergo a similar size transformation.

Recognizing this opportunity, this ERC aims to develop new modeling capabilities that will lead to optimized chip-scale designs for the classic electromagnetic applications in memory systems, antenna systems, and nanomotor systems. In addition, the TANMS researchers will continue to develop designer multiferroic materials and explore new application paradigms. To facilitate the rapid translation of technology, the ERC researchers will collaborate with their industry partners. 

The lead institution for TANMS is UCLA, which will partner with California State University-Northridge, Cornell University and the University of California-Berkeley. Researchers at the Edgenossische Technische Hochschule (ETH) in Zurich, Switzerland, will contribute additional expertise while providing international opportunities for TANMS student education.

Collaboration with more than 20 non-academic partners—including small and large companies (particularly from aerospace, electronic components, and medical technology sectors), regional innovation organizations, and national laboratories—will spur innovation and provide university students with first-hand experience in industrial manufacturing and entrepreneurship. The center will also interact with complementary research centers and organizations specializing in technology transfer to stimulate innovation based on its research.

Since 1985, the ERC program has fostered extensive collaborations to create technological breakthroughs for new products and services, and to prepare U.S. engineering graduates for successful participation in the global economy. The three centers launched in 2012, as part of the third generation of NSF ERCs (Gen-3 ERCs), place increased emphasis on innovation and entrepreneurship, partnerships with small research firms in translational research, education of an innovative engineering workforce, and international collaboration and cultural exchange.

The NERCs are expected to create transformational science and engineering platforms for the respective fields of nanoscale research, education, and innovation. As appropriate to its particular areas of research, each NERC will include the societal and environmental implications of the nano-enabled scientific and technological breakthroughs. The new centers are part of the National Nanotechnology Initiative (NNI), which provides a conceptual framework and additional collaborative opportunities, and they are strategically designed to build on more than a decade’s worth of investment and discoveries in fundamental nanoscale science and engineering.

“This center will bring together critical expertise in physics, materials science, and engineering to enable the integration of electromagnetic devices into chip-scale formats,” said Lynn Preston, the leader of the ERC Program. “We anticipate that, with these advances, multiferroic technologies will exhibit rapid growth.”


 For more information, visit www.nsf.gov.

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

June 2014 Issue Highlights

Our June 2014 issue is now available!

Podcasts

Manufacturing Day 2014

Manufacturing Day organizers share their insights with Managing Editor Kelsey Seidler.

More Podcasts

Ceramic Industry Magazine

CI October 2014 cover

2014 October

Materials advances, refractories and renewable energy - oh, my! Check out our October issue today!

Table Of Contents Subscribe

Personal Smartphones

Do you use your personal smartphone or other device to complete tasks for your job?
View Results Poll Archive

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40google+ icon 40px

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!