Raw and Processed Materials

Materials Innovations: Against the (Graphene) Grain

New research studies how the grain boundaries can remain strong.

October 1, 2013
KEYWORDS graphene
/ Print / Reprints /
ShareMore
/ Text Size+

Columbia Engineering researchers recently demonstrated that graphene, even if stitched together from many small crystalline grains, is almost as strong asGraphene material graphene in its perfect crystalline form.1 This work resolves a contradiction between theoretical simulations, which predicted that grain boundaries can be strong, and earlier experiments, which indicated that they were much weaker than the perfect lattice.

Graphene consists of a single atomic layer of carbon, arranged in a honeycomb lattice. “Our first Sciencepaper, in 2008, studied the strength graphene can achieve if it has no defects—its intrinsic strength,” said James Hone, professor of mechanical engineering, who led the study with Jeffrey Kysar, professor of mechanical engineering. “But defect-free, pristine graphene exists only in very small areas. Large-area sheets required for applications must contain many small grains connected at grain boundaries, and it was unclear how strong those grain boundaries were. This, our secondSciencepaper, reports on the strength of large-area graphene films grown using chemical vapor deposition (CVD), and we’re excited to say that graphene is back and stronger than ever.”

The study verifies that commonly used methods for post-processing CVD-grown graphene weaken grain boundaries, resulting in the extremely low strength seen in previous studies. The Columbia Engineering team developed a new process that prevents any damage to graphene during growth. “We substituted a different etchant and were able to create test samples without harming the graphene,” said Gwan-Hyoung Lee, the paper’s lead author and a postdoctoral fellow in the Hone lab. “Our findings clearly correct the mistaken consensus that grain boundaries of graphene are weak. This is great news because graphene offers such a plethora of opportunities both for fundamental scientific research and industrial applications.”

In its perfect crystalline form, graphene is the strongest material ever measured, as the Columbia Engineering team reported in Sciencein 2008—so strong that, as Hone observed, “it would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap.” For the first study, the team obtained small, atomically perfect flakes of graphene by mechanical exfoliation, or mechanical peeling, from a crystal of graphite. But exfoliation is a time-consuming process that will never be practical for any of the many potential applications of graphene that require industrial mass production.

Currently, scientists can grow sheets of graphene as large as a television screen by using chemical vapor deposition (CVD), in which single layers of graphene are grown on copper substrates in a high-temperature furnace. One of the first applications of graphene may be as a conducting layer in flexible displays.

“But CVD graphene is ‘stitched’ together from many small crystalline grains—like a quilt—at grain boundaries that contain defects in the atomic structure,” Kysar explained. “These grain boundaries can severely limit the strength of large-area graphene if they break much more easily than the perfect crystal lattice, and so there has been intense interest in understanding how strong they can be.”

The Columbia Engineering team wanted to discover what was making CVD graphene so weak. In studying the processing techniques used to create their samples for testing, they found that the chemical most commonly used to remove the copper substrate onto which CVD graphene is grown also causes damage to the graphene, severely degrading its strength.

Their experiments demonstrated that CVD graphene with large grains is exactly as strong as exfoliated graphene, showing that its crystal lattice is just as perfect. And, more surprisingly, their experiments also showed that CVD graphene with small grains, even when tested right at a grain boundary, is about 90% as strong as the ideal crystal.

“This is an exciting result for the future of graphene, because it provides experimental evidence that the exceptional strength it possesses at the atomic scale can persist all the way up to samples inches or more in size,” says Hone. “This strength will be invaluable as scientists continue to develop new flexible electronics and ultra-strong composite materials.”

Strong, large-area graphene can be used for a variety of applications such as flexible electronics and strengthening components—potentially, a television screen that rolls up like a poster or ultra-strong composites that could replace carbon fiber. Or, the researchers speculate, a science fiction idea of a space elevator that could connect an orbiting satellite to Earth by a long cord that might consist of sheets of CVD graphene, since graphene (and its cousin material, carbon nanotubes) is the only material with the high strength-to-weight ratio required for this kind of hypothetical application.

The team is also excited about studying other 2D materials like graphene. “Very little is known about the effects of grain boundaries in 2D materials,” Kysar said. “Our work shows that grain boundaries in 2D materials can be much more sensitive to processing than in 3D materials. This is due to all the atoms in graphene being surface atoms, so surface damage that would normally not degrade the strength of 3D materials can completely destroy the strength of 2D materials. However, with appropriate processing that avoids surface damage, grain boundaries in 2D materials, especially graphene, can be nearly as strong as the perfect, defect-free structure.”


For additional information, visit www.columbia.edu.


Reference

 1. “High-Strength Chemical-Vapor–Deposited Graphene and Grain Boundaries,” Science, https://www.sciencemag.org/content/340/6136/1073.abstract

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

June 2014 Issue Highlights

Our June 2014 issue is now available!

Podcasts

Manufacturing Day 2014

Manufacturing Day organizers share their insights with Managing Editor Kelsey Seidler.

More Podcasts

Ceramic Industry Magazine

CI September 2014 cover

2014 September

You won't want to miss the CI Top 10, traditionally our most popular article of the year!

Table Of Contents Subscribe

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40google+ icon 40px