Advanced Ceramics / CI Advanced Features / Raw and Processed Materials

Materials Innovation: Making a Gem of a Tiny Crystal

Slowly cooled DNA transforms disordered nanoparticles into orderly crystal.

February 1, 2014
/ Print / Reprints /
ShareMore
/ Text Size+

Nature builds flawless diamonds, sapphires and other gems. Now a Northwestern University research team is reportedly the first to build near-perfect single crystals out of nanoparticles and DNA, using the same structure favored by nature.

DNA nanoparticles into crystal


Northwestern researchers have developed a “recipe” for using nanomaterials as atoms, DNA as bonds and a little heat to form tiny crystals. An electron microscope image (left) shows a faceted single crystal consisting of nanoparticles brought together using DNA interactions. A schematic (right) illustrates how the lattice of nanoparticles is held together by DNA, taken from a simulation used to model the system. The observed crystal shape is a rhombic dodecahedron, a 12-sided polyhedron made up of congruent rhombic faces.

“Single crystals are the backbone of many things we rely on—diamonds for beauty as well as industrial applications, sapphires for lasers and silicon for electronics,” says Chad A. Mirkin, nanoscientist. “The precise placement of atoms within a well-defined lattice defines these high-quality crystals.

“Now we can do the same with nanomaterials and DNA, the blueprint of life,” he says. “Our method could lead to novel technologies and even enable new industries, much as the ability to grow silicon in perfect crystalline arrangements made possible the multibillion-dollar semiconductor industry.”

Developing the Recipe

His research group developed the “recipe” for using nanomaterials as atoms, DNA as bonds and a little heat to form tiny crystals. This single-crystal recipe builds on super-lattice techniques Mirkin’s lab has been developing for nearly two decades.

In this recent work, Mirkin, an experimentalist, teamed up with Monica Olvera de la Cruz, a theoretician, to evaluate the new technique and develop an understanding of it. Given a set of nanoparticles and a specific type of DNA, Olvera de la Cruz showed they can accurately predict the 3D structure, or crystal shape, into which the disordered components will self-assemble.

Mirkin is the George B. Rathmann professor of chemistry in the Weinberg College of Arts and Sciences. Olvera de la Cruz is a Lawyer Taylor professor and professor of materials science and engineering in the McCormick School of Engineering and Applied Science. The two are senior co-authors of the study.* The results were published in the article titled “DNA-Mediated Nanoparticle Crystallization into Wulff polyhedral” on November 27, 2013, in the journal Nature.

The general set of instructions gives researchers unprecedented control over the type and shape of crystals they can build. The Northwestern team worked with gold nanoparticles, but the recipe can be applied to a variety of materials, with potential applications in the fields of materials science, photonics, electronics and catalysis.

A single crystal has order: its crystal lattice is continuous and unbroken throughout. The absence of defects in the material can give these crystals unique mechanical, optical and electrical properties, making them very desirable.

In the Northwestern study, strands of complementary DNA act as bonds between disordered gold nanoparticles, transforming them into an orderly crystal. The researchers determined that the ratio of the DNA linker’s length to the size of the nanoparticle is critical.

“If you get the right ratio, it makes a perfect crystal—isn’t that fun?” says Olvera de la Cruz, who also is a professor of chemistry in the Weinberg College of Arts and Sciences. “That’s the fascinating thing—that you have to have the right ratio. We are learning so many rules for calculating things that other people cannot compute in atoms, in atomic crystals.”

The ratio affects the energy of the faces of the crystals, which determines the final crystal shape. Ratios that don’t follow the recipe lead to large fluctuations in energy and result in a sphere, not a faceted crystal, she explained. With the correct ratio, the energies fluctuate less and result in a crystal every time.

“Imagine having a million balls of two colors, some red, some blue, in a container, and you try shaking them until you get alternating red and blue balls,” Mirkin explains. “It will never happen. But if you attach DNA that is complementary to nanoparticles—the red has one kind of DNA, say, the blue its complement—and now you shake, or in our case, just stir in water, all the particles will find one another and link together. They beautifully assemble into a three-dimensional crystal that we predicted computationally and realized experimentally.”

 

Process Specifics

To achieve a self-assembling single crystal in the lab, the research team reports taking two sets of gold nanoparticles outfitted with complementary DNA linker strands. Working with approximately 1 million nanoparticles in water, they heated the solution to a temperature just above the DNA linkers’ melting point and then slowly cooled the solution to room temperature, which took two or three days.

The very slow cooling process encouraged the single-stranded DNA to find its complement, resulting in a high-quality single crystal approximately three microns wide. “The process gives the system enough time and energy for all the particles to arrange themselves and find the spots they should be in,” Mirkin says.

The researchers determined that the length of DNA connected to each gold nanoparticle can’t be much longer than the size of the nanoparticle. In the study, the gold nanoparticles varied from five to 20 nanometers in diameter; for each, the DNA length that led to crystal formation was about 18 base pairs and six single-base “sticky ends.”

“There’s no reason we can’t grow extraordinarily large single crystals in the future using modifications of our technique,” says Mirkin, who also is a professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering, as well as director of Northwestern’s International Institute for Nanotechnology.

The Air Force Office of Scientific Research (Multidisciplinary University Research Initiative, grant FA9550-11-1-0275) supported the research.


For further information, visit www.northwestern.edu.


 *In addition to Mirkin and Olvera de la Cruz, authors of the paper are Evelyn Auyeung (first author), Ting I. N. G. Li, Andrew J. Senesi, Abrin L. Schmucker and Bridget C. Pals, all from Northwestern. 

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

Recent Articles by Megan Fellman

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

September 2014 Issue Highlights

Our September 2014 issue is now available!

Posted: December 15, 2014

Podcasts

Manufacturing Day 2014

Manufacturing Day organizers share their insights with Managing Editor Kelsey Seidler.

More Podcasts

Ceramic Industry Magazine

CI December 2014 cover

2014 December

Be sure to check out our annual Services Directory and Business Guide, with additional articles on advanced glass components, ceramic grinding media, and more!

Table Of Contents Subscribe

Personal Smartphones

Do you use your personal smartphone or other device to complete tasks for your job?
View Results Poll Archive

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40google+ icon 40px

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!