CERAMIC INNOVATIONS: Cut the Noise

December 1, 2008
/ Print / Reprints /
ShareMore
/ Text Size+
Micro-honeycomb materials are enabling a new physics of sound reduction.

GTRI research engineer Jason Nadler has developed a new microchanneled material that reduces aircraft engine noise by wearing it down through a process called viscous shear. (Georgia Tech photo by Gary Meek.)


Noise from commercial and military jet aircraft causes environmental problems for communities near airports, obliging airplanes to follow often complex noise abatement procedures on takeoff and landing. It can also make aircraft interiors excessively loud.

To address this situation, engineers at the Georgia Tech Research Institute (GTRI) are turning to innovative materials that make possible a new approach to the physics of noise reduction. They have found that honeycomb-like structures composed of many tiny tubes or channels can reduce sound more effectively than conventional methods. The two-year project is sponsored by EADS North America, the U.S. operating entity of EADS.

“This approach dissipates acoustic waves by essentially wearing them out,” said Jason Nadler, a GTRI research engineer. “It’s a phenomenological shift, fundamentally different from traditional techniques that absorb sound using a more frequency-dependent resonance.”

Traditional Technology

Most sound-deadening materials, such as foams or other cellular materials comprising many small cavities, exploit the fact that acoustic waves resonate through the air on various frequencies, Nadler explained. Just as air blowing into a bottle produces resonance at a particular tone, an acoustic wave hitting a cellular surface will resonate in certain-size cavities, thereby dissipating its energy. An automobile muffler, for example, uses a resonance-dependent technique to reduce exhaust noise. The drawback with these traditional noise-reduction approaches is that they only work with some frequencies-those that can find cavities or other structures in which to resonate.

A New Approach

Nadler’s research involves broadband acoustic absorption, a method of reducing sound that doesn’t depend on frequencies or resonance. In this approach, tiny parallel tubes in porous media such as metal or ceramics create a honeycomb-like structure that traps sound regardless of frequency. Instead of resonating, sound waves plunge into the channels and dissipate through a process called viscous shear.

Viscous shear involves the interaction of a solid with a gas or other fluid. In this case, a gas (sound waves composed of compressed air) contacts a solid (the porous medium) and is weakened by the resulting friction. “It’s the equivalent of propelling a little metal sphere down a rubber hose when the sphere is just a hair bigger than the rubber hose,” Nadler explained. “Eventually the friction and the compressive stresses of contact with the tube would stop the sphere.”

This technique, Nadler added, is derived from classical mechanical principles governing how porous media interact with gases, such as the air through which sound waves move. Noise abatement using micro-scale honeycomb structures represents a new application of these principles. “You need to have the hole big enough to let the sound waves in, but you also need enough surface area inside to shear against the wave,” he said. “The result is acoustic waves don’t resonate; they just dissipate.”

Material Development

In researching this approach, Nadler constructed an early prototype from off-the-shelf capillary tubes, which readily formed a low-density, honeycomb-like structure. Further research showed that the ideal material for broadband acoustic absorption would require micron-scale diameter tubes and a much lower structural density.

Creating such low-density structures presents an interesting challenge, Nadler said. It requires a material that’s light, strong enough to enable the walls between the tubes to be very thin, and yet robust enough to function reliably amid the high-temperature, aggressive environments inside aircraft engines. Among the likely candidates are ceramics, metals and superalloys.

Nadler has developed what could be the world’s first superalloy micro-honeycomb using a nickel-base superalloy. At around 30% density, the material is very light (a clear advantage for airborne applications), strong and heat resistant.

He estimates this new approach could attenuate aircraft engine noise by up to 30%. Micro-honeycomb material could also provide another means to protect the aircraft in critical areas prone to impact from birds or other foreign objects by dissipating the energy of the collision. 

For more information, visit www.gatech.edu.

Links

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

In-Depth Features

These articles detail innovative advanced ceramic and glass materials and technologies.

Podcasts

Sapphire: An Extreme Performer

Ian Doggett of Goodfellow and CI Editor Susan Sutton discuss the benefits and opportunities provided by industrial sapphire.

More Podcasts

THE MAGAZINE

Ceramic Industry Magazine

CI April 2014 cover

2014 April

Our April issue features details on advanced materials such as ceramic matrix composites and piezoelectric ceramics, among many others. Be sure to check it out!

Table Of Contents Subscribe

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40