Exploring the Nanoparticle Potential

December 1, 2001
/ Print / Reprints /
ShareMore
/ Text Size+
More than 80 people attended Business Communication Co.’s (BCC) Fine, Ultrafine and Nanoparticles 2001 conference, held in Chicago, Ill., October 14-17. While attendance was somewhat lower than in the past several years due to increased difficulties in traveling, a high level of enthusiasm for the subject matter was evident among those who were able to attend. More than 20 papers on nanoparticle technology and applications were presented, with each generating a great deal of discussion among audience members.

The total world market for nanoparticulate materials (materials between 1 and 100 nanometers in size) reached $492.5 million in 2000 and is expected to grow to $900.1 million in 2005, according to a presentation by Dr. Mindy N. Rittner, senior industry analyst for BCC. Electronic, magnetic and optoelectronic applications are expected to continue generating the largest demand, with an anticipated 74.2% market share by 2005. Biomedical, pharmaceutical and cosmetic applications are expected to hold 16.1% of the market in 2005; while energy, catalytic and structural applications are expected to hold 9.8%.

Currently, the most commercially important nanoparticulate materials are simple metal oxides, such as silica (SiO2), titania (TiO2), alumina (Al2O3), iron oxide (Fe3O4 and Fe2O3), zinc oxide (ZnO), ceria (CeO2) and zirconia (ZrO2). Also of increasing importance are the mixed oxides, such as indium-tin oxide (In2O3-SnO2 or ITO) and antimony-tin oxide (ATO), as well as titanates, particularly barium titanate (BaTiO3). Other types of nanoparticles, including various complex oxides, metals, semiconductors and nonoxide ceramics, such as tungsten carbide (WC), are also under development and are available from some companies in primarily small or pilot-scale quantities.

Inframat Corp. in Farmington, Conn., is developing the next generation of a nanostructured hydroxyapatite (n-HA) coating for artificial bone implants using a room-temperature electrophoretic deposition process. According to Dr. Danny Xiao, vice president of R&D, current artificial implants use micrometer-sized HA particles coated on metal substrates using thermal spray processes. The high-temperature thermal spray process often causes HA coating delamination from implants in service due to the dissolution of the amorphous phase. Inframat’s room-temperature electrophoretic deposition process overcomes this difficulty. The nanocoatings are obtained at ambient temperature, thus mimicking the functional properties of the human body. Additionally, the coatings offer significantly increased coating-to-substrate adhesion, an extended lifetime for the artificial implants, and a lower-cost fabrication process.

Recent breakthroughs in advanced nanomaterials have also provided new opportunities to develop high-power and high-energy batteries for pure electric and hybrid electric vehicles. According to Dr. G. Abbas Nazri, staff research scientist for General Motors R&D and Planning Center in Warren, Mich., the unusual catalytic properties of nanoparticles embedded in a suitable matrix has provided a non-traditional electrode assembly that can satisfy the energy and power requirements of electric vehicles. Future batteries based on nanomaterials are expected to satisfy the long travel range of 300 miles, enabling them to fully substitute internal combustion vehicles.

Producing large quantities of nanoparticles with identical properties cheaply and reliably, however, remains a challenge. According to Xiangdong Feng of Ferro Corp., Cleveland, Ohio, nanoparticles represent not only a size concept, but, more importantly, a state of matter that displays new physical, chemical and biological properties when compared with the bulk materials.

Still, according to Dr. Don Freed, vice president of business development for Nanophase Technologies Corp., Romeoville, Ill., enormous potential for nanoparticle technology does exist, and increasing demand will help both suppliers and end users overcome the challenges. It’s just a matter of time.

Editor's Note

The next Fine, Ultrafine and Nanoparticles conference will be held in October 2002. For more information, contact Business Communications Co., (203) 853-4266, fax (203) 853-0348, or visit www.bccresearch.com.

Links

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

Recent Articles by Christine Grahl

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

In-Depth Features

These articles detail innovative advanced ceramic and glass materials and technologies.

Podcasts

Sapphire: An Extreme Performer

Ian Doggett of Goodfellow and CI Editor Susan Sutton discuss the benefits and opportunities provided by industrial sapphire.

More Podcasts

THE MAGAZINE

Ceramic Industry Magazine

CI April 2014 cover

2014 April

Our April issue features details on advanced materials such as ceramic matrix composites and piezoelectric ceramics, among many others. Be sure to check it out!

Table Of Contents Subscribe

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40