GLASS INNOVATIONS: New Glass Powder Could Make a Big Wave

June 1, 2008
/ Print / Reprints /
ShareMore
/ Text Size+
ORNL researchers have developed a superhydrophobic glass powder that is easy to fabricate and uses inexpensive base materials.

The nanostructured material maintains a microscopic layer of air on surfaces even when submerged in water, resulting in a profound change in the basic water-solid interface.


A water repellent developed by researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL) outperforms nature at its best and could open a floodgate of commercial possibilities. Developed by John Simpson, a member of the Engineering Science and Technology Division, the super-water-repellent (superhydrophobic) material is easy to fabricate and uses inexpensive base materials. The patent-pending process could lead to the creation of a new class of water-repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings.

“My goal was to make the best possible water-repellent surface,” Simpson says. “What I developed is a glass powder coating material with remarkable properties that cause water-based solutions to bounce off virtually any coated surface.”

The nanostructured material maintains a microscopic layer of air on surfaces even when submerged in water, resulting in a profound change in the basic water-solid interface. Simpson likes to refer to this as the “Moses Effect.”

Traditionally, Simpson notes that superhydrophobic coatings were expensive, were of poor water-repellent quality or lacked the durability to make them practical. “Existing high-quality superhydrophobic materials are generally relegated to university research laboratories because they are difficult and expensive to produce, not scalable to large volumes, and not amenable to being made into a commercially viable coating,” he says.

A drop of liquid sits on a surface that has been treated with the superhydrophobic coating.

A New Process

The process for making superhydrophobic glass powder is based on differentially etching two glass phases from phase-separated glass. Simpson starts with borosilicate phase separating glass as the base material, which he heats to separate further. He then crushes this material into a powder and differentially etches the powder to completely remove the interconnected borate glass phase. Differential etching makes the powder porous and creates nanoscale-sharpened features.

Finally, Simpson treats the powder with a special hydrophobic solution to change the glass surface chemistry from hydrophilic to hydrophobic. The powder’s porosity and nanoscale-sharpened features amplify the effect of water’s surface tension and cause the powder to become “unwettable.”

“Such a superhydrophobic powder has many features and advantages, some of which include ease of manufacturing, low cost and scalability,” Simpson says. “The fact that the coral-like nanoscale features can be preserved as the powder grain size is reduced allows us to make very small superhydrophobic powder grains.” Therefore, only a small amount of inexpensive superhydrophobic powder is needed to coat a relatively large surface area.

Broad Opportunities

Another feature of the glass powder is its thermal insulation characteristics. Water does not enter the grain pores because the powder grains are superhydrophobic. The result is a dry, breathable coating with trapped insulating air throughout.

In addition, because the powder consists almost entirely of porous amorphous silica, it also makes a very good electrical insulator. Plus, since the powder creates a layer of air between the coated substrate and any water on the surface, water-based corrosion of the substrate is greatly reduced or entirely eliminated.

Simpson believes the number of possible applications will continue to expand as more people become aware of the technology. “Staying dry in a rainstorm may only have a small personal value, but reducing the energy required to transport products by boat or barge, or extending the life of bridges or buildings, would have a great value to society and individuals alike,” said Simpson.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy. This research was funded by the Laboratory Directed Research and Development program. Visit www.ornl.gov for additional information.

Links

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

May 2014 Issue Highlights

Our May 2014 issue is now available!

Podcasts

Sapphire: An Extreme Performer

Ian Doggett of Goodfellow and CI Editor Susan Sutton discuss the benefits and opportunities provided by industrial sapphire.

More Podcasts

Ceramic Industry Magazine

CI August 2014 cover

2014 August

Explore technical ceramics, glasses and refractories in our August issue!

Table Of Contents Subscribe

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40google+ icon 40px