Healthy Prospects for Nanoceramic Powders

September 25, 2000
/ Print / Reprints /
ShareMore
/ Text Size+
Nanosized materials are those particles—organic, inorganic or a combination—that are nanometer sized (i.e. in the order of one-billionth of a meter, or 10-9 meter). These particles can be amorphous, semicrystalline or crystalline. In general, they are less than 100 nm in size. Nanosized or nanostructured materials exhibit many interesting properties and are increasingly being used for new and innovative applications.

Nanophase and Nanocomposite

There are two main classes of nanosized materials: nanophase and nanocomposite. Nanophase materials provide closer control of product properties. Nanophase ceramics (nanoceramics), for example, are stronger and more ductile than conventional ceramics. They can also be sintered at lower temperatures, increasing the range of possible substrates and lowering processing costs. Nanophase materials are generally monolithic pure materials, such as titanium oxide.

In nanocomposite ceramics, a tiny ceramic particle will be entrapped in another particle. An example of a nanocomposite is nanometer-sized silicon carbide inside of alumina. Nanocomposite ceramics can exhibit wear resistance, chemical inertness, corrosion resistance and thermal insulating properties.

Applications

Nanophase materials, including nanoceramics, have the potential to become another materials revolution. Nanophase material properties can be manipulated to provide a designer with the specific material needed to build a product that is strong and can withstand wide temperature variations, while having special optical, electrical or magnetic properties. The ability to manufacture a nanocrystal ceramic material at lower temperatures is a great advantage that could result in economical production of flawless, high-precision ceramics using techniques similar to those in the powder-metal industry.

Nanostructured materials are being developed and used for diverse applications that exploit their magnetic, optical, electronic, catalytic and other properties. The unique properties of nanocrystalline ceramics have opened a wide range of applications, including durable ceramic parts for automotive engines, cutting tools, ultrafine filters, flexible superconducting wire and fiber-optic connector components. Some of the other potential and current applications are shown in Table 1.

U.S. Markets

The market for nanosized materials has been slowly picking up in the latter part of the 1990s. According to a Business Communications Co., Inc. (BCC) study, “Fine and Nano Ceramic Powders,” the 1998 market is estimated to be 2.2 million pounds worth $42 million. This is projected to increase to 6.5 million pounds worth $156 million by the year 2003. Nanocrystalline iron oxide and alumina are expected to remain the market leaders, with shares of about 40% and 29%, respectively, during the projected period. Other nanoceramic powders such as barium titanate, ceria, zirconia and zinc oxide are expected to double their market shares from 1998 to 2003.

Table 2 presents the major markets for nanoceramic powders according to various advanced ceramic applications, i.e., electronic, structural and chemical processing/environmental, and Figure 1 shows the share of each market segment. In 1998, the combined electronic/magnetic/optic applications constituted 50% of the total market, followed by structural/mechanical applications with 33.3%. However, by the year 2003, structural/mechanical applications are expected to pick up more growth to reach $60.5 million with a market share of 38.8%, due to increased usage as abrasives in chemical mechanical polishing (CMP) applications.

Among the electronic/magnetic/optical applications, magnetic application is expected to have the most dramatic growth due to increased application of nanocrystalline iron oxides as contrast agents for MRI (magnetic resonance imaging) procedures. Another application is iron oxide nanocrystals in the more established ferrofluid market. Among the structural/mechanical applications, significant growth is expected in the usage of nanocrystalline oxides for industrial polishing applications, particularly in the semiconductor industry, where ultrafine abrasive particles are needed for the chemical mechanical polishing of dielectric and metallic layers deposited on silicon wafers.

Currently, amorphous silica is the predominantly used abrasive material, although alumina is also used for CMP. Several companies involved in this area are investigating other oxides as well, including nanocrystalline ceria, zirconia and titania. Besides polishing applications in the semiconductor industry, nanocrystalline abrasives are also used to obtain high quality finishes on magnetic recording disks and heads and optical fibers. Nanocrystalline alumina is expected to account for about three-quarters of the total abrasive market, with other materials such as ceria and zirconia generating the remainder.

International Competition

Overall, the most serious competitors to U. S. producers of nanocrystalline materials are companies based in Japan and Germany. The Japanese were quick to recognize the technological importance of small particles and launched concerted development and commercialization efforts in the 1960s that were continued in the following decades. A number of Japanese companies have thus developed large-scale and cost-effective ultrafine and nanocrystalline powder production facilities.

An area receiving a great deal of attention is the development of ultrafine particles for magnetic recording media. Based on this early focused effort, the Japanese now completely dominate the magnetic recording tape industry in terms of submicron and nanocrystalline particle production. There are three major Japanese companies producing oxide and metallic magnetic nanocrystalline powders for incorporation into magnetic tapes—Dowa Mining, Kanto Denka Kogyo and Toda Kogyo. The Japanese are also major producers of nonmagnetic particles, such as titania and alumina, and have succeeded in marketing these materials in the U. S. at very competitive prices.

Although the Japanese were quick to jump on the bandwagon, the Germans—companies such as Degussa and Wacker Chemie—were the true leaders in nanostructured materials technology, as they were among the pioneers of vapor-phase processing methods to produce nanocrystalline particles in the 1930s and commercialized the production of nanoscale fumed silicas in the next decade. Today the Germans remain important players in this industry.

Editor’s Note: This article is based on a recently completed BCC study “Fine and Nano Ceramic Powders,” published in May 1999. A copy of the table of contents of this study including the introduction is available gratis. Contact: Dr. Thomas Abraham, BCC Inc., 25 Van Zant St., Norwalk, CT 06855, USA; (203) 853-4266, ext. 313, fax: (203) 853-0348; e-mail: tombcc@aol.com.

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

In-Depth Features

These articles detail innovative advanced ceramic and glass materials and technologies.

Podcasts

Sapphire: An Extreme Performer

Ian Doggett of Goodfellow and CI Editor Susan Sutton discuss the benefits and opportunities provided by industrial sapphire.

More Podcasts

THE MAGAZINE

Ceramic Industry Magazine

CI April 2014 cover

2014 April

Our April issue features details on advanced materials such as ceramic matrix composites and piezoelectric ceramics, among many others. Be sure to check it out!

Table Of Contents Subscribe

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40