MATERIAL INNOVATIONS: Medicinal Boron

January 1, 2009
/ Print / Reprints /
ShareMore
/ Text Size+
European researchers  are harnessing the unique  properties of boron  to develop new drugs and diagnostics.



Researchers are on the verge of unleashing the power of the element boron in a new generation of drugs and therapies as decades of research begins to bear fruit. To date, boron has been one of biology’s best-kept secrets, but it is now attracting growing research interest and investment from the pharmaceutical industry in the quest for novel drugs to tackle cancer and infectious diseases, potentially overcoming limitations and side effects of current products.

Europe’s response to the challenges and opportunities of boron chemistry in medicine was discussed at a recent workshop, Biobor-Exploring New Opportunities Of Boron Chemistry Towards Medicine. According to the event’s moderator, Zbigniew Lesnikowski, the European Science Foundation (ESF) workshop set the stage for a new era of boron therapies going beyond the current application in cancer radiotherapy via boron neutron capture therapy (BNCT), in which the element is used to help translate beams of neutrons into radiation that targets tumor cells with less “collateral damage” of surrounding healthy tissue.

“It became obvious during the workshop that there is now sufficient knowledge and enough compounds to support a broad program of screening in the quest for new antiviral and anticancer drugs containing essential boron components,” said Lesnikowski. There was also scope for improving the application of BNCT to cancer. In addition to these two therapeutic avenues, boron also has potential as the basis for compounds in diagnosis and biosensing, as well as for novel bioorganic materials.

Chemical Benefits

The applications in biosensing, biomaterials and drug development all spring from the fundamental chemical properties of boron. All life is derived ultimately from the element carbon, which lies next to boron in the periodic table of elements, their respective atomic numbers being six and five. Boron compounds share some similarities with carbon but also have important differences. It is the combination of these similarities and differences that gives boron its unique potential in medicine.

The important similarity is that boron, like carbon, combines with hydrogen to form stable compounds that can participate in biochemical reactions and syntheses. The key difference is that these compounds have distinctive geometrical shapes and electronic charge distributions with greater 3-D complexity than their carbon-based equivalents.

As Lesnikowski put it, while organic carbon molecules tend to comprise rings and chains, boron hydrides (compounds comprising mostly boron and hydrogen) are made up of clusters and cages. This 3-D structure makes it possible to design molecules with specific charge distributions by varying their internal structure, which in turn brings the potential to tune how each part of the structure relates to water molecules and biomolecules present in living organisms. If a component is hydrophobic, meaning it repels water, it is well-placed to enter cells by crossing the membrane. If it is hydrophilic, meaning water-loving, it will naturally be soluble in water. The hydrophobic/hydrophilic interactions also affect how a molecule makes contact and communication with target proteins and nucleic acids.

Future Potential

The fact that novel boron compounds will be unfamiliar to life has potential advantages for antibiotic drugs, since pathogens will be less able to develop resistance against them. “Also, the kind of interactions would be somehow different from the key-lock systems built up in living cell lines in nature for billions of years,” said Lesnikowski. “We can thus anticipate that active substances would be less prone to the development of resistance. This is an obvious advantage of boron drugs.”

While pathogens such as bacteria and viruses are capable of evolving resistance against almost any molecule that attacks them, Lesnikowski believes that it would take longer for this to happen in the case of boron-based compounds. This would therefore make it easier for humans to remain one step ahead rather than struggling to keep pace.

Apart from a lack of knowledge over boron’s potential, the development of boron compounds for medicine has been held back until now by the high cost of the catalysts and boron-based intermediate compounds used in the synthesis. Another important recent development was therefore the availability of lower-cost intermediates in the synthesis processes, according to Lesnikowski.

For more information, visit www.esf.org.

Links

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

April 2014 Issue Highlights

Our April 2014 issue is now available!

Podcasts

Sapphire: An Extreme Performer

Ian Doggett of Goodfellow and CI Editor Susan Sutton discuss the benefits and opportunities provided by industrial sapphire.

More Podcasts

Ceramic Industry Magazine

CI July 2014

2014 July

Our annual Data Book & Buyers' Guide is your best resource for suppliers of materials and equipment for the ceramic, glass, brick and related industries. Check it out!

Table Of Contents Subscribe

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40google+ icon 40px