ONLINE EXCLUSIVE: The Nano Evolution

August 1, 2004
/ Print / Reprints /
ShareMore
/ Text Size+
Growing applications are steadily creating real opportunities for nanostructured ceramic materials

Nanostructured materials, or nanomaterials, can be loosely defined as organic or inorganic matter composed of discrete particles that exist in a variety of shapes, including spheres, strands and clusters, ranging in size from 1 to 100 nm. However, arguments continue to be raised over this definition. Some argue that any material capable of being manipulated at the atomic level is a nanomaterial, or that some materials exist discretely in the slightly larger 250 nm range but should nevertheless be considered nanomaterials. The final definition-like so many other aspects of this growing field-will undoubtedly be determined by emerging markets and applicability as opposed to pure science.

Hundreds of materials are being developed on the nanoscale, both in pure form and as composites. Examples include carbon, tungsten, titanium and cobalt, as well as many technical ceramics, such as aluminum oxide (Al2O3), silicon carbide (SiC) and their composites. Further, applications for nanomaterials are increasingly growing and include coatings and powder composites used in alloying and doping, as well as solid preforms.

Ceramics, because of their broad physical and electronic capabilities, continue to be one of the key materials for extensive nanoscale development. Thus, the commercial potential of nanostructured ceramics, or nanoceramics, in pure form and as a composite or coating material is becoming increasingly well documented, and hundreds of companies are developing products ranging from thin-film coatings and cutting tools to engine components and wear parts.

The Market Today

In 2004, the market for nanoceramics is expected to reach nearly $100 million worldwide, up 12.4% from 2003 (see Table 1). (Note: The total value includes not only commercial revenue generated by product sales, but also internal/captive sales, corporate R&D and government-sponsored programs.) The three largest sectors demanding nanoceramics will be the defense/military, electronics and medical/bioscience industries. Combined, these three markets will account for more than 50% of the total value, followed by the automotive and metal machining markets (see Figure 1).

Figure 1. World nanostructured ceramics by market (%), 2004.

Source: Dedalus Consulting Inc.

Over 70% of commercial demand continues to be in the coatings market, although the market for composite wear parts shows a strong growth rate of nearly 20% annually. The coatings market illustrates the most significant driver behind the advancement of nanomaterials-namely the development of consistent application-appropriate technologies. Potential applications for coatings include wear resistant rotating parts, such as in machinery or medical prosthetics, and thermal barriers for aerospace turbine blades and automobile engines. Successful coating of rotating and wear parts in harsh environments shows an increase in wear, hardness and stability of more than 25% in many cases. It also increases general coating strength and material adhesion. However, results have been found to be inconsistent and vary by process and application.

Thus, within the coatings market, application demands dictate the process used in applying the coating, as well as process advancements. New technologies are continually being developed employing thermal plasma spraying and high-velocity oxygen fuels (HVOF), which are the two main processes of forming and applying nanomaterial coatings. In thermal plasma spraying, a material is heated to its molten form using a torch or furnace and is deposited through a jet nozzle onto the substrate material. In HVOF, oxygen and fuel gas create extremely high temperatures and propulsion velocities, melting the source material and allowing for a high-density coating. The advantages of each type of process depend on the application. For example, there have been indications in testing that the HVOF process produces better results in abrasion wear applications within the paper-making and automotive engine parts markets due to substrate material composition and factors of operation. Thus, steps being taken to commercialize each process must clearly account for technical and practical factors, many of which are still being discovered on the nanoscale.



A Nanotech Explosion?

Commercial demand will continue to grow steadily at double-digit levels over the next five years, but significant hurdles must be overcome before the realization of a nanotechnology boom. The main market driver will continue to be the development and refinement of technology based on two factors. The first is consistency across fabrication and testing processes, and the second is technological sophistication based on specific application needs and end-user criteria. Once these objectives are met, the next determinant in creating a fully integrated nano-ceramics industry will be the development of mass-production capabilities and the integration of materials and advanced product manufacturing.

Many of these phases are being considered concurrently and could move the implementation of mass-scale production within a five to seven year window of opportunity, considering current investment trends by the public and private sectors. Thus, the world market is predicted to grow by a cumulative average annual growth rate of 14.8% from 2004-2009. Each market will show strong growth levels ranging from 10.7% to 18.1%, led by the medical/bioscience market (see Table 1). The market will continue to be driven by scientific gains and grow at a healthy 14.8% to reach nearly $900 million by 2009.

Editor's note: The foregoing information was based on a new report recently published by Dedalus Consulting Inc., titled Nanostructured Materials: Developing Markets, Applications & Commercial Opportunities: 2004-2009 Analysis and Forecasts (May 2004). The report was based on primary and secondary sources, including surveys of more than 150 scientists, material suppliers and end users. For more information about this report, contact Dedalus Consulting at 128 Prospect Place, 4th Floor, Brooklyn, NY 11217; (718) 622-0830; fax (718) 622-0831; e-mail info@dedalusconsulting.com ; or visit http://www.dedalusconsulting.com .

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

June 2014 Issue Highlights

Our June 2014 issue is now available!

Podcasts

Manufacturing Day 2014

Manufacturing Day organizers share their insights with Managing Editor Kelsey Seidler.

More Podcasts

Ceramic Industry Magazine

CI September 2014 cover

2014 September

You won't want to miss the CI Top 10, traditionally our most popular article of the year!

Table Of Contents Subscribe

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40google+ icon 40px