Under the Wire

June 1, 2005
/ Print / Reprints /
ShareMore
/ Text Size+
Wire sawing is gaining increasing popularity as an efficient, high-quality slicing method for many ceramic, quartz and glass applications.



When machining glass and ceramic components for high-tech applications, criteria such as productivity and cutting quality are paramount. For these reasons, a number of companies are turning to wire saws. With benefits such as high throughput, accuracy and repeatability, as well as low kerf loss, wire saws can optimize slicing processes and minimize waste.

Wire Saw Operation

In most wire saws, a single wire (typically plain steel) is fed from a supply spool through a tensioning system onto two, three or four wire guide rolls, depending on the size of the machine. These rolls are grooved at a constant pitch, and the wire is fed around the rolls several times, always proceeding one groove after the other toward the front of the machine to form a "web" of adjacent wires (see Figure 1). The rotation of the guide rolls moves the wire web, and a collection spool on the output side of the machine receives the used wire. An abrasive slurry (usually silicon carbide or diamond for ceramic and glass applications) is fed through a multitude of nozzles into the wire web and is dragged along with the rotation of the wire; no direct mechanical contact occurs between the abrasive particles and the wire. As the workpiece is pushed into the wire web, the slurry-clad wire cuts the material into slices at a thickness determined by the pitched grooves of the wire guide rolls.

A more recent innovation is a fixed abrasive wire saw, in which the diamond crystals are mechanically bound to the wire and no slurry is used (see Figure 2).

Figure 1. Principle of wire sawing. The workpiece is fed into the wire web, which carries an abrasive slurry and cuts the material.

The Wire Advantage

Compared to other machining processes, wire sawing offers distinct advantages in production efficiency, part quality and kerf loss. While the feed speed of the workpiece is relatively slow compared to other commonly used slicing methods, such as outer diameter (O.D.) and inner diameter (I.D.) saws, the parallel processing capabilities of wire saws typically enable a higher throughput. For example, some of the largest wire saws used to cut solar cell wafers in the photovoltaic industry can slice more than 2000 mm of feedstock into 4500 wafers in a single run. O.D. and I.D. saws, on the other hand, can only slice one wafer at a time, making them impractical for such high production volumes. Smaller wire saws used in other applications produce equally impressive throughput results.

In any machining process, the quality of the cut wafers is determined by the geometrical variation within one wafer and by the variation from one wafer to the others. Workpieces with a cross section of 200 x 200 mm sliced with wire saws have exhibited a variation of around 10 microns for both values. Even more importantly, these tolerances are repeatable from one run to the next.

Wire saws also generate a low amount of heat during the slicing process. Even the largest workpieces are not heated above 50°C, making the process ideal for heat-sensitive materials. Additionally, wire saws can cut any material, regardless of electrical or chemical properties. The resulting surface finish is excellent with low roughness values, and because the wire sawing process is gentle, little subsurface damage is imparted to the piece.

Another benefit of wire sawing is the very low kerf loss that is achieved-typically 200 microns or less. This compares to a kerf loss of around 400 microns with I.D. saws, and as much as 1.5-3 mm with O.D. saws. A low kerf loss is especially important for companies that machine expensive raw materials or that use expensive processing steps, such as hot pressing, before slicing. For these applications, every additional part that can be generated by reduced kerf loss is more profit for the bottom line.

When fixed abrasive wire is used, the wire sawing process can be optimized even further by providing greater reductions in cutting time and subsurface damage in the material being machined, as well as reduced abrasive disposal costs.

Figure 2. The DS 265, supplied by Meyer + Burger AG, is an example of a wire saw that can use either fixed or loose abrasive.

Increasing Applications

By far, the largest applications for wire saws are in slicing silicon for semiconductor wafers and solar cells, but other applications are also growing rapidly. For example, in the manufacture of substrates for blue laser diodes, wire saws are used to machine sapphire (single crystal alumina) and single crystal silicon carbide, both of which are among the hardest known materials. Wire saws are also used to cost-effectively slice parts made of polycrystalline functional ceramics used for X-ray imaging and piezoceramic stacks. Since these parts often contain expensive chemical elements or must pass through expensive processing steps, the low kerf loss provided by wire sawing is a key benefit.

Sintered structural ceramics, such as alumina, zirconia and all varieties of polycrystalline silicon carbide, as well as aluminum nitride, glass and quartz, are also being successfully machined using this technology. As companies in the ceramic and glass industry continue to look for ways to improve their machining processes and workpiece quality, wire sawing will undoubtedly play an increasing role.

For more information about wire sawing, contact:



SIDEBAR: Equipment Selection

When selecting wire sawing equipment, the key components to consider are the wire guide rolls and their bearings, the wire tensioning system, and the workpiece feed mechanism. The wire guide rolls determine the geometric quality of the workpiece that is cut. The grooves that guide the wire must be accurate, and the rolls themselves must be stable against thermal changes in the machine to avoid warping the workpiece during slicing. Additionally, the wire tensioning system should tension the wire uniformly at a constant load-not an easy task, since the wire runs at speeds of up to 15 meters/second, and the control loop needs to be fast enough to compensate for occurring fluctuations on the supply spool of the wire. Finally, the machine should precisely feed the workpiece into the wire web to prevent misaligned cuts. A standard linearity is 3 microns on a distance of 300 mm of wire travel.

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

You must login or register in order to post a comment.

Multimedia

Videos

Image Galleries

June 2014 Issue Highlights

Our June 2014 issue is now available!

Podcasts

Manufacturing Day 2014

Manufacturing Day organizers share their insights with Managing Editor Kelsey Seidler.

More Podcasts

Ceramic Industry Magazine

CI September 2014 cover

2014 September

You won't want to miss the CI Top 10, traditionally our most popular article of the year!

Table Of Contents Subscribe

THE CERAMIC INDUSTRY STORE

M:\General Shared\__AEC Store Katie Z\AEC Store\Images\Ceramics Industry\handbook of advanced ceramics.gif
Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

More Products

Clear Seas Research

Clear Seas ResearchWith access to over one million professionals and more than 60 industry-specific publications,Clear Seas Research offers relevant insights from those who know your industry best. Let us customize a market research solution that exceeds your marketing goals.

Directories

CI Data Book July 2012

Ceramic Industry's Directories including Components, Equipment Digest, Services, Data Book & Buyers Guide, Materials Handbook and much more!

STAY CONNECTED

facebook_40px twitter_40px  youtube_40pxlinkedin_40google+ icon 40px