• Sign In
  • Create Account
  • Sign Out
  • My Account
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • CIAdvanced Digital Edition
    • Archives
  • News
  • New Products
  • Topics
    • Advanced Ceramics
    • Refractories
    • Glass
    • Whitewares
    • Brick and Structural Clay
    • Raw and Processed Materials
    • Firing and Drying
    • Batching and Materials Handling
    • Forming and Finishing
    • Instrumentation & Lab Equipment
    • Decorating
  • Columns
    • IP in Depth
    • Glass Works
    • Ceramic Decorating
    • The Big Picture
  • More
    • CIAdvanced Microsite
    • CI Top 14
    • Raw & Manufactured Materials Overview
    • eNewsletters
    • Classifieds & Services Marketplace
    • Virtual Supplier Brochures
    • Market Trends
    • Blogs
    • Material Properties Charts
    • CI Store
    • CI Supplier of the Year Award
  • Multimedia
    • Videos
    • Podcasts
    • Photo Galleries
    • Mobile App
  • Events
    • Calendar
    • Ceramics Expo 2017
  • Directories
    • Data Book & Buyers' Guide
    • Ceramic Components Directory
    • Materials Handbook
    • Equipment Digest
    • R&D Lab Equipment & Instrumentation
    • Services Directory
    • Take a Tour
  • Contact
  • Advertise
  • Subscribe
    • Print & Digital Edition Subscriptions
    • eNewsletters
    • Online Registration
    • Customer Service
Home » Advanced Ceramics: Nuclear Ceramics: A Renaissance?
Columns

Advanced Ceramics: Nuclear Ceramics: A Renaissance?

August 1, 2001
R. Nathan Katz
Reprints
No Comments
While conservation and zero emissions renewable sources (wind, solar and hydro) are advocated in Washington’s new energy policy, the emphasis is on developing new supplies and technologies for traditional consumable fuels, including oil, gas, coal and nuclear. After many years it appears that there is advocacy for adding new nuclear capacity to our power grid. What is the case for nuclear power, and what opportunities will it create for the ceramic industry?

Pros and Cons

Nuclear power is considered a zero “greenhouse emissions” technology and currently constitutes 16% of the world’s electrical power generation (~20% in the U.S. and ~75% in France). Fifty percent of U.S. electricity comes from burning coal—a known contributor to greenhouse gases and acid rain. Coal combustion also releases a significant amount of radiation into the biosphere. Typical levels of radioactive elements in U.S. coal are ~1 ppm uranium; ~3 ppm thorium; and smaller traces of radium, radon and polonium. Even with precipitators capturing most particulates, it has been estimated that the effective radiation exposure dose is 100 times greater for burning coal compared to nuclear. Additionally, in 1999 the generating costs per KWh in the U.S. was less for nuclear than for coal.

The cons focus on reactor safety and waste disposal, which are serious issues for concern and vigilant monitoring. Yet the existing U.S. civil nuclear power industry has not caused any fatalities or releases of radiation that have threatened public health. Standardized reactor designs and new technology, such as the pebble bed modular reactor, promise improved safety margins. Deep geological disposal of radioactive waste, using multiple natural and engineered barriers to migration of hazardous isotopes, has been approved by international regulatory agencies. The risk-benefit analysis of modern nuclear power weighs heavily in favor of increasing the percentage of nuclear in our energy mix, and these new nuclear power plants will provide opportunities for advanced ceramics. The major opportunities are in two areas—nuclear fuel and waste immobilization.

Nuclear Fuel

Uranium dioxide is the preeminent fuel for civil reactors in the U.S. After leaching uranium ore, U3O8 is precipitated out. This material is then sent to government controlled processing plants, where it is converted to UF6 gas. Using either diffusion or centrifugal processing, U235 F6 is separated from U238 F6. The U235 enriched gas is reacted to form UO2 powder, which is pressed and sintered into pellets. These are loaded into zirconium alloy tubes making fuel rods.

In Europe, spent fuel is frequently reprocessed. Since plutonium is created in the fission process, reprocessed fuel contains both radioactive U and Pu, and is referred to as mixed oxide fuel. A 1000 MW reactor will “burn” 25 tons of UO2 per year, and a pound of fuel costs about $450. Thus a 1000 MW reactor will consume ~$22.5 million of UO2 annually.

Waste Immobilization

So-called high level waste (HLW) accounts for over 95% of all radioactivity resulting from nuclear power generation. The long-lived radioisotopes in HLW must be contained for tens of thousands of years. The major requirements for waste immobilization material are:

1. The radioactive elements must become immobilized as part of the crystal or glass structure of the material,
2. The leaching rate of radioactive elements must be acceptably low, and
3. The cost must be acceptable.

Deep burial in stable geological structures is the preferred final repository for HLW. HLW not already contained in spent fuel rods, such as HLW from fuel reprocessing, is vitrified into borosilicate glass and cast into stainless steel cans for ultimate burial. Burials are scheduled to begin in 2010. A year’s worth of HLW from a 1000 MW reactor can be stored in ~26 m3. A second generation immobilization material, synroc, is in advanced development. This synthetic rock, based on mixed titanate phases such as zirconolite, hollandite or perovskite, incorporates the elements in the HLW into its crystal structure, yielding excellent chemical stability. Synroc features leach rates better than an order of magnitude lower than borosilicate glass.

Other Applications

Boron10 has an unusually large neutron capture cross section. Natural boron contains ~20% B10, and this percentage can be “enriched” if desired. Boron compounds are widely used as neutron absorbers in reactors, i.e., boron carbide in control rods. Other applications for ceramics will be in radiation detection instrumentation and sensors.

While there will be many business opportunities for advanced ceramics if nuclear power experiences a revival, the real payoff is the opportunity to reduce greenhouse and radioactive emissions into the biosphere.

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

Recent Articles by R. Katz

Advanced Ceramics: Zeolites = More Miles Per Barrel

Advanced Ceramics: Ceramic Filters and Membranes

Advanced Ceramics: Thermal Barrier Coatings Beat the Heat

Advanced Ceramics: NTC Thermistors

R. Nathan Katz is the Norton Research Professor in the Department of Mechanical Engineering at Worcester Polytechnic Institute, Worcester, MA. He is also a Fellow of the American Ceramic Society.

Related Articles

Advanced Ceramics: Ceramic Filters and Membranes

Advanced Ceramics: Dental Ceramics

Advanced Ceramics: Continuous Fiber Ceramic Composites

Advanced Ceramics: Zeolites = More Miles Per Barrel

Related Products

Ceramics for Environmental and Energy Applications: Ceramic Transactions, Volume 217

Handbook of Advanced Ceramics Machining

Processing and Properties of Advanced Ceramics and Composites III: Ceramic Transactions, Volume 225

Advanced Structural Ceramics

Related Events

11th International Advanced Ceramics Exhibition & Conference (IACE China 2018)

Ceramics Expo 2018

Indian Ceramics 2018

8th Annual Advanced Automotive Battery Conference

Related Directories

Astro Met Advanced Ceramics Inc.

PremaTech Advanced Ceramics

Saint-Gobain Ceramics

Praxair Specialty Ceramics

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Customer Service

More Videos

CI directories

Products

Handbook of Advanced Ceramics Machining

Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

See More Products

CI raw and manufactured materials

Ceramic Industry Magazine

CI September 2017 Cover

2017 September

Find out which companies are the leading manufacturers of advanced ceramics, glasses and refractories in the 2017 CI Top 14!
View More Subscribe
  • Resources
    • Advertiser Index
    • List Rental
    • Custom Content & Marketing Services
    • Manufacturing Group
    • Partners
    • Want More?
    • Connect
    • Privacy Policy

Copyright ©2017. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing