• Sign In
  • Create Account
  • Sign Out
  • My Account
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • CIAdvanced Digital Edition
    • Archives
  • News
  • New Products
  • Topics
    • Advanced Ceramics
    • Refractories
    • Glass
    • Whitewares
    • Brick and Structural Clay
    • Raw and Processed Materials
    • Firing and Drying
    • Batching and Materials Handling
    • Forming and Finishing
    • Instrumentation & Lab Equipment
    • Decorating
  • Columns
    • IP in Depth
    • Glass Works
    • Ceramic Decorating
    • The Big Picture
  • More
    • CIAdvanced Microsite
    • CI Top 12
    • Raw & Manufactured Materials Overview
    • eNewsletters
    • Classifieds & Services Marketplace
    • Virtual Supplier Brochures
    • Market Trends
    • Blogs
    • Material Properties Charts
    • CI Store
    • CI Supplier of the Year Award
  • Multimedia
    • Videos
    • Podcasts
    • Photo Galleries
    • Mobile App
  • Events
    • Calendar
    • Ceramics Expo 2017
  • Directories
    • Data Book & Buyers' Guide
    • Ceramic Components Directory
    • Materials Handbook
    • Equipment Digest
    • R&D Lab Equipment & Instrumentation
    • Services Directory
    • Take a Tour
  • Contact
  • Advertise
  • Subscribe
    • Print & Digital Edition Subscriptions
    • eNewsletters
    • Online Registration
    • Customer Service
Home » Kiln Connection: Burner Control Systems, Part 2
Kiln ConnectionColumns

Kiln Connection: Burner Control Systems, Part 2

July 1, 2002
Ralph Ruark
Reprints
No Comments
One of the simplest systems available to automatically proportion the flow of fuel and air, the ratio regulator has been used for decades and continues to achieve wide acceptance because of its simplicity, low cost and accuracy

In the last column (CI May 2002, p. 19 [http://www.ceramicindustry.com/CDA/ArticleInformation/features/BNP__Features__Item/0,2710,77528,00.html]), we reviewed basic fluid flow calculations and the operation of a standard ratio regulator as used in a proportioning system. One of the simplest systems available to automatically proportion the flow of fuel and air, this regulator has been used for decades and continues to achieve wide acceptance because of its simplicity, low cost and accuracy (as good as ±3% with quality components and the correct design). Performance of the system can suffer badly, however, if proper design guidelines or setup parameters are not used.

Important Guidelines

The impulse line that provides the signal air must be a “pure” signal, i.e., it must be reflective of the air flow. If the impulse line is not installed properly or is placed in the wrong location, the ratio accuracy can deteriorate severely. The location of the impulse line connection in the combustion air line must be an area of minimal turbulence. To insure this, no valves or fittings should be located within 10 pipe diameters upstream, and five pipe diameters downstream, of the impulse point.

The impulse connection must also be installed correctly. The tap into the combustion air pipe should not protrude into the pipe or else the tap might sense velocity pressure or turbulence in addition to the impulse pressure. Since the design of the system depends on an accurate signal, poorly installed impulse taps can destroy the accuracy and may also affect burner stability.

Piping into and out of the regulator must not be reduced in size with bushings, etc. Bushings affect the flow turbulence and, accordingly, affect the gas pressure sensed by the regulator itself. If the regulator sees a false pressure reading, it cannot control accurately.

Proper fuel pressure at the inlet to the regulator must be maintained. Normally, this means that the gas pressure should be at least eight in. water column (w.c.) above the highest pressure that the impulse line will apply to the regulator. If the gas pressure is too low, the regulator will not be able to “keep up” with the impulse signal at high fire, causing the fuel flow to deviate from the proper value.

If the system requires an exceptional range of operation—higher than 7:1—then two additional guidelines apply. Use one regulator per burner, particularly if high back pressure, high velocity burners are installed. High velocity burners typically have a large combustion block pressure, and this pressure is impressed on the incoming gas line. As the combustion takes place, this back pressure varies slightly. Without a regulator on each burner, the varying back pressure causes the burner fuel flow to vary, leading to burner instability or even flame out.

Additionally, use a bypass around the regulator to set minimum firing rate. This consists of a small needle valve (1⁄8 in.) and a tubing connection upstream and downstream of the regulator. All regulators, especially those with low output, have some level of hysteresis. The bypass line can be used to set a consistent, low level of fuel flow to assure stable minimum firing rates and ease of lighting.

Accurate Metering

Set up of the proportional system is simple and straightforward, provided that the system has the correct measurement devices. Ideally, metering orifices are placed in the gas and air line in order to accurately measure fuel and air flow. Alternatively, some burners—particularly high velocity burners—may have metering orifices built into them. These can be adequate if the inlet piping to the burner has sufficient straight runs of piping into the air and fuel ports. Unfortunately, this is typically overlooked by most system installers.

The system setup is most accurately achieved in either case by adjusting the fuel and air input with the burner(s) at the maximum firing rate. With the air at maximum, simply adjust the gas limiting orifice for the correct fuel flow. When this is completed, it is wise to check the fuel and air flow at intermediate firing levels to be sure that the regulator is performing properly.

Disadvantages

The proportional control system offers energy efficiency when used in ceramic firing because no excess air is used. But there are also disadvantages. If a high velocity burner is used with the proportional system, high velocity will only be achieved when the burner inputs are near maximum. Since this will not always be the case, circulation and temperature uniformity may suffer.

Additionally, NOx levels are typically higher at reduced outputs due to limited furnace air entrainment and somewhat higher effective flame temperatures. If NOx is a serious issue, alternatives do exist in the selection of the burner type. Pulse firing systems also hold great promise for NOx reduction.

In summary, the proportional firing system is one of the simplest systems available for burner operation. Using the guidelines mentioned here will assure accuracy, stability and reduced energy consumption. In the next column, we’ll look at alternative systems, including excess air and pulse firing.

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

Recent Articles by Ralph Ruark

What You Need to Know About NFPA 86-2015

Investing in Ceramics: Conrad Dressler - Artist, Inventor, Founder

Carbon - Something Old, Something New

Ahead of the Curve

Kiln Connection: A Farewell

Ralph-ruark-107px

Ralph Ruark is president of Swindell Dressler International. He was formerly president of Ruark Engineering, Inc., a company that provided analysis, recommendations and training for clients worldwide that manufacture industrial ceramics. He can be reached at (412) 788-7100 or rruark@swindelldressler.com.

Related Articles

Kiln Connection: Burner Control Systems, Part 3

Kiln Connection: Pressure Control in Tunnel Kilns, Part 2

Kiln Connection: Burner Ratio Control

KILN CONNECTION: Energy Considerations-Part 2

Related Products

Optimizing Social Media from a B2B Perspective

CI R&D Lab Equipment Directory

Ceramic Thick Films for MEMS and Microdevices

Catalina Island Pottery and Tile 1927-1937

Related Events

parts2clean

ceramitec 2018

Deco '18

Deco '19

Related Directories

SBL Kiln Services Inc.

L & L Kiln Mfg. Inc.

L&L Kiln Mfg. Inc.

L & L Kiln Mfg. Inc.

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Customer Service

More Videos

CI directories

Products

Handbook of Advanced Ceramics Machining

Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

See More Products

CI raw and manufactured materials

Ceramic Industry Magazine

CI July 2017 Cover

2017 July

Welcome to your 2017 Data Book & Buyers' Guide! Be sure to also check out our most popular articles of the year.
View More Subscribe
  • Resources
    • Advertiser Index
    • List Rental
    • Custom Content & Marketing Services
    • Manufacturing Group
    • Partners
    • Want More?
    • Connect
    • Privacy Policy

Copyright ©2017. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing