• Sign In
  • Create Account
  • Sign Out
  • My Account
  • Home
  • Magazine
    • Current Issue
    • Digital Edition
    • CIAdvanced Digital Edition
    • Archives
  • News
  • New Products
  • Topics
    • Advanced Ceramics
    • Refractories
    • Glass
    • Whitewares
    • Brick and Structural Clay
    • Raw and Processed Materials
    • Firing and Drying
    • Batching and Materials Handling
    • Forming and Finishing
    • Instrumentation & Lab Equipment
    • Decorating
  • Columns
    • IP in Depth
    • Glass Works
    • Ceramic Decorating
    • The Big Picture
  • More
    • CIAdvanced Microsite
    • CI Top 12
    • Raw & Manufactured Materials Overview
    • eNewsletters
    • Classifieds & Services Marketplace
    • Virtual Supplier Brochures
    • Market Trends
    • Blogs
    • Material Properties Charts
    • CI Store
    • CI Supplier of the Year Award
  • Multimedia
    • Videos
    • Podcasts
    • Photo Galleries
    • Mobile App
  • Events
    • Calendar
    • Ceramics Expo 2017
  • Directories
    • Data Book & Buyers' Guide
    • Ceramic Components Directory
    • Materials Handbook
    • Equipment Digest
    • R&D Lab Equipment & Instrumentation
    • Services Directory
    • Take a Tour
  • Contact
  • Advertise
  • Subscribe
    • Print & Digital Edition Subscriptions
    • eNewsletters
    • Online Registration
    • Customer Service
Home » What is Annealing?

What is Annealing?

June 3, 2010
James J. Riviello
Reprints
No Comments


One of the most important concepts to learn before working with glass is annealing. The process of annealing glass is to cool it slowly enough to let the entire thickness cool with very little difference in temperature from the core to the surface. Since glass insulates very well, this can take a long (sometimes very long) time.

What we call the annealing point is the temperature just below the freezing point, which is just under 1000°F for most soda-lime “soft” glass. At this temperature, the glass is cool enough that it no longer moves or slumps with gravity, and hot enough that it cannot begin to build up stress in the glass. If glass is held at this temperature long enough (about 1 hour per ¼ in. of thickness), it will relieve any stress, and cooling can begin from there.

But what is the stress? Almost everything expands when it heats up and contracts when it cools down. This is because the molecules move or vibrate more with heat, and they need more room around them to move, making the object expand. If the core of a piece of glass is still hot when the outside surface is cooling and therefore shrinking, the outside surface cannot stretch around the core. This is what is referred to as stress, which cracks glass. So stress is really the squeezing of the surface of glass around a hotter core; heating it too quickly it will stress the glass also.

To properly anneal glass, it must first sit at the annealing point long enough for the entire thickness to become even in temperature, and then the high-temperature cooling may begin. This must be the slowest rate of cooling from the annealing temperature to what is also called the high-temp strain point. After this point, the rate of cooling speeds up to the low-temp strain point. Then it can finally cool at the fastest rate to room temperature.

Every different glass batch formula has a specific rate at which it must cool. This is measured as the coefficient of expansion or (COE), which is how much the glass grows with each degree of temperature. Before figuring your annealing cycle, you need to know the COE from the manufacturer. All glass manufacturers and vendors of glass made for melting have charts listed for annealing their glass online. They provide the annealing, high-temp cooling (HTC) and low-temp heating (LTH) temperatures, and the degrees per hour it can cool between them. You must simply follow the chart for the thickness (usually rounded up tooth nearest ¼ in.) and see how many degrees per hour it can cool between those points. Because all different glass has a different COE, you cannot mix two different types of glass together. This is known as incompatibility, and no amount of annealing can allow them to “fit” together.

The annealing of glass becomes exponentially longer with thickness. If you double the thickness, you have to more than double the annealing time. For example, .5-in.-thick glass at 90 COE anneals for about 5 hours total, a 1-in.-thick piece anneals for 14 hours, 3-in. for 99 hours, and an 8-in. piece for 654 hrs (or about a month).

I want to leave you with one last interesting fact. We know that the molecular structure of glass stays random when it freezes, rather than crystallizing. This is where the theory of “glass may still be moving under the annealing point, just very slowly” comes from. Did you ever hear someone say that this is why the glass at the bottom of old windows is thicker? Well, if this were true about glass that is probably no more than 200 years old, wouldn’t glass from ancient Greece, or Egyptian glass, or especially glass from Mesopotamia (up to 5000 years ago) be a puddle by now? The reason the glass is thicker at the bottom is because it is hand-blown glass and cut square from a large roundel, or plate. Blown plates are always thinner at the edge because of centrifugal force when they are spun flat on the end of a pipe. The window maker would always place the panes of glass in the frames with the thickest part on the bottom.

Links

  • "Glass Art in the Realm of Sculpture"

Did you enjoy this article? Click here to subscribe to Ceramic Industry Magazine.

Recent Articles by James Riviello

Stick to It

Glass Art in the Realm of Sculpture

James has been working in glass for over 18 years as a sculptor, educator, equipment builder, consultant and designer. He received a bachelor’s of fine arts degree in glass from Tyler School of Art, and a master’s of fine arts degree in glass from Southern Illinois University Carbondale. His work experience also includes being master model and mold maker, as well as foundry foreman, for a bronze and aluminum casting company. Today, James resides with his family in Vermont, where he makes sculpture in cast glass and operates a furniture design business with his wife, Justyna. He can be reached via www.glassatelier.com.

Related Articles

Centorr Vacuum Industries: Vacuum Annealing Furnace (posted 1/12/09)

PARAGON INDUSTRIES: Glass Annealing Kilns

Paragon: Glass Bead Annealing Kiln

POTTERY PRODUCTION PRACTICES: Controlled Firings: Kiln Design Matters

Related Products

Optimizing Social Media from a B2B Perspective

Related Directories

Oxy-Gon Industries Inc.

Oxy-Gon Industries Inc.

TevTech LLC

Grinding Media Depot, a Norstone Co.

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print & Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Customer Service

More Videos

CI directories

Products

Handbook of Advanced Ceramics Machining

Handbook of Advanced Ceramics Machining

Ceramics, with their unique properties and diverse applications, hold the potential to revolutionize many industries, including automotive and semiconductors.

See More Products

CI raw and manufactured materials

Ceramic Industry Magazine

CI June 2017 Cover

2017 June

Learn about high-tech ceramic applications, find out what you can expect to see at SEMICON West, and get caught up on what you might have missed at Ceramics Expo!
View More Subscribe
  • Resources
    • Advertiser Index
    • List Rental
    • Custom Content & Marketing Services
    • Manufacturing Group
    • Partners
    • Want More?
    • Connect
    • Privacy Policy

Copyright ©2017. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing